Math 601 Midterm 2

Name: \qquad

This exam has 8 questions, for a total of 100 points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	15	
2	10	
3	15	
4	15	
5	15	
6	10	
7	10	
8	10	
Total:	100	

Question 1. (15 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) If A is a square matrix with all entries being positive, then $\operatorname{det}(A)$ is positive.
(b) An $(n \times n)$ matrix is invertible if and only if its n column vectors form a linearly independent set.
(c) Let U and V be subspaces of \mathbb{R}^{10}. If $\operatorname{dim} U=7$ and $\operatorname{dim} V=3$, then $U+V=\mathbb{R}^{10}$.
(d) Let $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$, then W is a subspace of \mathbb{R}^{3}.
(e) Let A be a 3×3 matrix. If A is diagonalizable, then A has 3 distinct eigenvalues.

Solution:

(a) False
(b) True
(c) False
(d) True
(e) False

Question 2. (10 pts)
Find all eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
3 & 4-3 i \\
4+3 i & 3
\end{array}\right]
$$

Solution:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ll}
3-\lambda & 4-3 i \\
4+3 i & 3-\lambda
\end{array}\right|=(3-\lambda)^{2}-(4-3 i)(4+3 i)=\lambda^{2}-6 \lambda-16
$$

When $\lambda=8$, the eigenvector is

$$
v=\left[\begin{array}{c}
4-3 i \\
5
\end{array}\right]
$$

When $\lambda=-2$, the eigenvector is

$$
w=\left[\begin{array}{c}
4-3 i \\
-5
\end{array}\right]
$$

Question 3. (15 pts)
The eigenvalues and corresponding eigenvectors of the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$ are $\lambda_{1}=1$ with $v_{1}=(1,0,0)^{T}, \lambda_{2}=2$ with $v_{2}=(1,1,0)^{T}$ and $\lambda_{3}=3$ with $v_{3}=(1,2,1)^{T}$.
(a) Find the general solution to the system

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

In other words,

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{t}+c_{2} e^{2 t}+c_{3} e^{3 t} \\
c_{2} e^{2 t}+2 c_{3} e^{3 t} \\
c_{3} e^{3 t}
\end{array}\right]
$$

(b) Find a specific solution $\mathbf{x}(t)$ such that

$$
\mathbf{x}(0)=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right]
$$

when $t=0$.

Solution:

$$
\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+2 c_{3} \\
c_{3}
\end{array}\right] .
$$

Therefore, we need to solve for c_{1}, c_{2} and c_{3} of the following linear system

$$
\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+2 c_{3} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right]
$$

which has a unique solution $c_{1}=3, c_{2}=2$ and $c_{3}=1$. So the solution satisfying the given initial condition is

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
3 e^{t}+2 e^{2 t}+e^{3 t} \\
2 e^{2 t}+2 e^{3 t} \\
e^{3 t}
\end{array}\right]
$$

Question 4. (15 pts)
F is linear transformation from $\mathbb{P}_{2}(t)$ to $\mathbb{P}_{2}(t)$ defined by

$$
F\left(a+b t+c t^{2}\right)=(a+2 b-c)+(b+c) t+(a+b-2 c) t^{2} .
$$

Recall that $S=\left\{1, t, t^{2}\right\}$ is a basis of $\mathbb{P}_{2}(t)$.
(a) Write down the matrix representation of F relative to the basis $S=\left\{1, t, t^{2}\right\}$.

Solution: Notice that

$$
\begin{gathered}
F(1)=1+t^{2} \\
F(t)=2+t+t^{2} \\
F\left(t^{2}\right)=-1+t-2 t^{2} \\
{[F]_{S}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
1 & 1 & -2
\end{array}\right]}
\end{gathered}
$$

(b) Find the kernel of F.

Solution: First reduce the matrix $[F]_{S}$ in part (a) to its echelon form, which is

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So $\operatorname{Ker} F=\operatorname{span}\left\{\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]\right\}$. In other words, $\operatorname{Ker} F$ is spanned of one polynomial $3-t+t^{2}$.
(c) Find the dimension of the image of F.

Solution:

$$
\operatorname{dim}(\operatorname{Im} F)+\operatorname{dim}(\operatorname{Ker} F)=3
$$

From part (b), we know that $\operatorname{dim}(\operatorname{Ker} F)=1$. So $\operatorname{dim}(\operatorname{Im} F)=2$.
(d) Is F is an isomorphism? Explain.

Solution: Since $\operatorname{Ker} F$ is not equal to the zero vector space $\{0\}$, we see that F is not an isomorphism.

Question 5. (15 pts)
Let U be the subspace of \mathbb{R}^{4} spanned by

$$
v_{1}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
8 \\
5 \\
1 \\
4
\end{array}\right] .
$$

(a) Find an orthonormal basis of U.

Solution:

$$
\begin{gathered}
w_{1}=v_{1}=(0,1,0,0) \\
w_{2}=v_{2}-\frac{\left\langle w_{1}, w_{2}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=(2,0,0,1) \\
w_{3}=v_{3}-\frac{\left\langle w_{1}, w_{3}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle w_{2}, w_{3}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=(0,0,1,0)
\end{gathered}
$$

So

$$
u_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right], \quad v_{3}=\frac{w_{3}}{\left\|w_{3}\right\|}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

(b) Find the projection of

$$
w=\left[\begin{array}{l}
4 \\
2 \\
5 \\
0
\end{array}\right]
$$

onto U.

Solution:

$$
\begin{aligned}
\operatorname{Proj}_{U}(w) & =\left\langle w, u_{1}\right\rangle u_{1}+\left\langle w, u_{2}\right\rangle u_{2}+\left\langle w, u_{3}\right\rangle u_{3} \\
& =2 u_{1}+\frac{8}{\sqrt{5}} u_{2}+5 u_{3} \\
& =\left(\frac{16}{5}, 2,5, \frac{8}{5}\right)^{T}
\end{aligned}
$$

Question 6. (10 pts)

Determine whether the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is diagonalizable.

Solution: Use cofactor expansion along the first column

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & -\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right|=(1-\lambda) \lambda^{2}
$$

So $\lambda=1$ and 0 .
When $\lambda=1$, solve for the kernel of the matrix

$$
\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

We find an eigenvector $v=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
When $\lambda=0$, solve for the kernel of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We find an eigenvector $w_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $w_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
We can verify that v, w_{1} and w_{2} are linearly independent. It follows that A has 3 linearly independent eigenvectors, so A is diagonalizable.

Question 7. (10 pts)

Let V be the vector space spanned by the basis $S=\left\{e^{x}, x e^{x}, e^{-x}\right\}$. Determine whether the functions

$$
\begin{gathered}
g_{1}(x)=e^{x}+x e^{x}+e^{-x} \\
g_{2}(x)=2 e^{x}+3 x e^{x}+4 e^{-x} \\
g_{3}(x)=x e^{x}+5 e^{-x}
\end{gathered}
$$

are linearly independent or not.

Solution:

$$
\begin{aligned}
& {\left[g_{1}\right]_{S}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
& {\left[g_{2}\right]_{S}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]} \\
& {\left[g_{3}\right]_{s}=\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right]}
\end{aligned}
$$

Consider the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 3 & 1 \\
1 & 4 & 5
\end{array}\right]
$$

its echelon form is

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

which has rank 3 . Therefore g_{1}, g_{2} and g_{3} are linearly independent.

Question 8. (10 pts)
Let V be the vector space spanned by $\{\sin x, \cos x, \sin (2 x), \cos (2 x)\}$. Accept as a fact that

$$
S=\{\sin x, \cos x, \sin (2 x), \cos (2 x)\}
$$

form a basis for V. Let

$$
T(f)=f-2 f^{\prime}
$$

be a linear transformation from V to V. Determine whether T is an isomorphism, that is, whether T is invertible. (Hint: first find the matrix representation of T with respect to S.)

Solution:

$$
T(\sin x)=\sin x-2 \cos x
$$

similarly, we have

$$
\begin{gathered}
T(\cos x)=\cos x+2 \sin x \\
T(\sin (2 x))=\sin (2 x)-4 \cos (2 x) \\
T(\cos (2 x))=\cos (2 x)+4 \sin (2 x)
\end{gathered}
$$

So

$$
[T]_{\mathfrak{B}}=\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & -4 & 1
\end{array}\right]
$$

Notice that the determinant of $[T]_{\mathfrak{B}}$ is $85 \neq 0$. (Alternatively, show that $[T]_{\mathfrak{B}}$ has rank 4.) So T is an isomorphism.

