Name: _____

This exam has 8 questions, for a total of 100 points.

Please answer each question in the space provided. You need to write **full solutions**. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	15	
2	10	
3	15	
4	15	
5	15	
6	10	
7	10	
8	10	
Total:	100	

Question 1. (15 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.

- (a) If A is a square matrix with all entries being positive, then det(A) is positive.
- (b) An $(n \times n)$ matrix is invertible if and only if its n column vectors form a linearly independent set.
- (c) Let U and V be subspaces of \mathbb{R}^{10} . If dim U = 7 and dim V = 3, then $U + V = \mathbb{R}^{10}$.
- (d) Let $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$, then W is a subspace of \mathbb{R}^3 .
- (e) Let A be a 3×3 matrix. If A is diagonalizable, then A has 3 distinct eigenvalues.

Solution:(a) False			
(b) True			
(c) False			
(d) True			
(e) False			

Question 2. (10 pts)

Find all eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} 3 & 4-3i \\ 4+3i & 3 \end{bmatrix}$$

Solution: $\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 4 - 3i \\ 4 + 3i & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - (4 - 3i)(4 + 3i) = \lambda^2 - 6\lambda - 16$

When $\lambda = 8$, the eigenvector is

$$v = \begin{bmatrix} 4 - 3i \\ 5 \end{bmatrix}$$

When $\lambda = -2$, the eigenvector is

$$w = \begin{bmatrix} 4 - 3i \\ -5 \end{bmatrix}$$

Question 3. (15 pts)

The eigenvalues and corresponding eigenvectors of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ are $\lambda_1 = 1$ with $v_1 = (1, 0, 0)^T$, $\lambda_2 = 2$ with $v_2 = (1, 1, 0)^T$ and $\lambda_3 = 3$ with $v_3 = (1, 2, 1)^T$. (a) Find the general solution to the system

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$

Solution: The general solution is

$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1\\0\\0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$

In other words,

$$\begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = \begin{bmatrix} c_1 e^t + c_2 e^{2t} + c_3 e^{3t} \\ c_2 e^{2t} + 2c_3 e^{3t} \\ c_3 e^{3t} \end{bmatrix}$$

(b) Find a specific solution $\mathbf{x}(t)$ such that

$$\mathbf{x}(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 1 \end{bmatrix}$$

when t = 0.

Solution:

$$\begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix} = \begin{bmatrix} c_1 + c_2 + c_3 \\ c_1 + 2c_3 \\ c_3 \end{bmatrix}$$

Therefore, we need to solve for c_1, c_2 and c_3 of the following linear system

$$\begin{bmatrix} c_1 + c_2 + c_3 \\ c_1 + 2c_3 \\ c_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 1 \end{bmatrix}$$

which has a unique solution $c_1 = 3$, $c_2 = 2$ and $c_3 = 1$. So the solution satisfying the given initial condition is

$$\begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = \begin{bmatrix} 3e^t + 2e^{2t} + e^{3t} \\ 2e^{2t} + 2e^{3t} \\ e^{3t} \end{bmatrix}$$

Question 4. (15 pts)

F is linear transformation from $\mathbb{P}_2(t)$ to $\mathbb{P}_2(t)$ defined by

$$F(a+bt+ct^{2}) = (a+2b-c) + (b+c)t + (a+b-2c)t^{2}$$

Recall that $S = \{1, t, t^2\}$ is a basis of $\mathbb{P}_2(t)$.

(a) Write down the matrix representation of F relative to the basis $S = \{1, t, t^2\}$.

Solution: Notice	$F(1) = 1 + t^2$
	$F(t) = 2 + t + t^2$ $F(t^2) = -1 + t - 2t^2$
	$[F]_S = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$

(b) Find the kernel of F.

Solution: First reduce the matrix $[F]_S$ in part (a) to its echelon form, which is $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ So $\operatorname{Ker} F = \operatorname{span} \{ \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \}$. In other words, $\operatorname{Ker} F$ is spanned of one polynomial $3 - t + t^2$.

(c) Find the dimension of the image of F.

Solution:

 $\dim(\mathrm{Im} F) + \dim(\mathrm{Ker} F) = 3$ From part (b), we know that $\dim(\mathrm{Ker} F) = 1$. So $\dim(\mathrm{Im} F) = 2$.

(d) Is F is an isomorphism? Explain.

Solution: Since Ker F is not equal to the zero vector space $\{0\}$, we see that F is not an isomorphism.

Question 5. (15 pts) Let U be the subspace of \mathbb{R}^4 spanned by

$$v_1 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 8\\5\\1\\4 \end{bmatrix}.$$

(a) Find an orthonormal basis of U.

Solution:

$$w_{1} = v_{1} = (0, 1, 0, 0)$$

$$w_{2} = v_{2} - \frac{\langle w_{1}, w_{2} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} = (2, 0, 0, 1)$$

$$w_{3} = v_{3} - \frac{\langle w_{1}, w_{3} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} - \frac{\langle w_{2}, w_{3} \rangle}{\langle w_{2}, w_{2} \rangle} w_{2} = (0, 0, 1, 0)$$
So

$$u_{1} = \frac{w_{1}}{\|w_{1}\|} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \quad u_{2} = \frac{w_{2}}{\|w_{2}\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\0\\0\\1 \end{bmatrix}, \quad v_{3} = \frac{w_{3}}{\|w_{3}\|} = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}.$$

Page 8

(b) Find the projection of

$$w = \begin{bmatrix} 4\\2\\5\\0 \end{bmatrix}$$

onto U.

Solution:

$$Proj_U(w) = \langle w, u_1 \rangle u_1 + \langle w, u_2 \rangle u_2 + \langle w, u_3 \rangle u_3$$

$$= 2u_1 + \frac{8}{\sqrt{5}}u_2 + 5u_3$$

$$= (\frac{16}{5}, 2, 5, \frac{8}{5})^T$$

Question 6. (10 pts)

Determine whether the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is diagonalizable.

Solution: Use cofactor expansion along the first column

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 0 & -\lambda & 0 \\ 0 & 0 & -\lambda \end{vmatrix} = (1 - \lambda)\lambda^2$$

So $\lambda = 1$ and 0.

When $\lambda = 1$, solve for the kernel of the matrix

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

We find an eigenvector $v = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

When $\lambda = 0$, solve for the kernel of the matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We find an eigenvector $w_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $w_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

We can verify that v, w_1 and w_2 are linearly independent. It follows that A has 3 linearly independent eigenvectors, so A is diagonalizable.

Question 7. (10 pts)

Let V be the vector space spanned by the basis $S = \{e^x, xe^x, e^{-x}\}$. Determine whether the functions

$$g_1(x) = e^x + xe^x + e^{-x}$$
$$g_2(x) = 2e^x + 3xe^x + 4e^{-x}$$
$$g_3(x) = xe^x + 5e^{-x}$$

are linearly independent or not.

Solution: $[g_1]_S = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$
$[g_2]_S = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$
$[g_3]_s = \begin{bmatrix} 0\\1\\5 \end{bmatrix}$
Consider the matrix $ \begin{bmatrix} 1 & 2 & 0 \\ 1 & 3 & 1 \\ 1 & 4 & 5 \end{bmatrix} $
its echelon form is $ \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix} $
which has rank 3. Therefore g_1 , g_2 and g_3 are linearly independent.

Question 8. (10 pts)

Let V be the vector space spanned by $\{\sin x, \cos x, \sin(2x), \cos(2x)\}$. Accept as a fact that

 $S = \{\sin x, \cos x, \sin(2x), \cos(2x)\}$

form a basis for V. Let

T(f) = f - 2f'

be a linear transformation from V to V. Determine whether T is an isomorphism, that is, whether T is invertible. (Hint: first find the matrix representation of T with respect to S.)

Solution:

similarly, we have

$$T(\cos x) = \cos x + 2\sin x$$
$$T(\sin(2x)) = \sin(2x) - 4\cos(2x)$$
$$T(\cos(2x)) = \cos(2x) + 4\sin(2x)$$

 $T(\sin x) = \sin x - 2\cos x$

So

			0
-2	1	0	0
0	0	1	4
0	0	-4	1
			$\begin{bmatrix} 1 & 2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -4 \end{bmatrix}$

Notice that the determinant of $[T]_{\mathfrak{B}}$ is $85 \neq 0$. (Alternatively, show that $[T]_{\mathfrak{B}}$ has rank 4.) So T is an isomorphism.